X26

Tiltrotator 18-26 tonnes

A tiltrotator for excavators between 18 and 26 tonnes

The Steelwrist X26 tiltrotator is designed to deliver the power and durability that is a must for excavators of this size. Our tiltrotators have a low building height, high tilt angle and an unbeatable relationship between strength and weight thanks to steel cast components.

A tiltrotator for the heavy-duty tasks

Our X26 tiltrotator is perfect for heavy-duty tasks in road work, foundation digging, earthmoving and demolition in large construction projects. The X26 tiltrotator enhances the efficiency of the excavator as it enables you to rotate a work tool 360 degrees and tilt 45 degrees in each direction, with top of the class precision and controllability. This facilitates your work and makes you flexible to take on a variety of challenging new jobs.

Steelwrist quick couplers and tiltrotators follow the symmetrical standard (S-standard), the fastest growing coupler type internationally. The attachment coupler on the tiltrotator has Front Pin Lock (FPL) safety solution, a mechanical lock of the front shaft which significantly limits the risk of an unintended drop of work tools. The tiltrotator is delivered with a control system that fits your excavator regardless if you need a two or four hose solution. With a tiltrotator that has high flow hydraulics you will be able to use the tiltrotator in a more fuel efficient way and it allows for efficient use of high flow work tools. A robust and easily calibrated Absolute Rotation sensor in the high flow swivel gives high accuracy data to Machine Control Systems.
A Sandwich configuration is often chosen for this size of excavators. This means that a quick coupler is mounted on the excavator arm, making it possible to disconnect the tiltrotator and pick up and connect a work tool directly.

Steelwrist SQ auto connection system and the Open-S standard

Steelwrist SQ is our high performing automatic oil connection technology used to easily change and connect hydraulic work tools on the excavator. All SQ products comply with the Open-S standard. This means that the SQ system is designed to be able to connect to other brands following the Open-S standard. S-type tiltrotators (from S50 and up) are upgradeable to SQtype at a later stage.

Control system

Steelwrist supply two types of tiltrotator control systems. Quantum is an advanced control system where ergonomics, easy installation and fuel efficiency, remote support and automatic tool recognition are important parts of the system. The four hose proportional machine control is the more basic system.

Gripper cassette (option)

Equip the tiltrotator with a gripper cassette with a finger gripper that will make your excavator even more flexible, handling objects with precision. The gripper cassette can be retrofitted.

Central lubrication (option)

Our tiltrotators can be equipped directly from factory with central lubrication that fits all central lubrication systems on the market.

The X26 tiltrotator is also available with Verachtert (CW) or Lehnhoff (HS) coupler interface. For Verachtert (CW) the tiltrotator always has a Direct fit configuration.

Work tools and Open-S -
 the world industry standard for fully automatic quick couplers

The Symmetrical Quick Coupler standard for excavators (the S-Standard) is an industry standard that was originally defined in 2006 by the Swedish Trade Association for Suppliers of Mobile Machines.

The Symmetrical standard, which is an open standard not controlled by one specific manufacturer, has since its inception grown to become a well-known coupler standard on the international market. The demand for quick couplers with integrated hydraulic couplings and electrical connectors, so called Fully Automatic Quick Couplers continue to grow.

In order to achieve interchangeability the request for a standardized and well-defined interface is therefore apparent.

As fully Automatic Quick Couplers have more intricate functions than a standard Mechanical Quick Coupler it is crucial that also non hydraulic work tools include certain features such as hardened shafts and cover plates etc. The purpose of this document is to define the technical dimensions for mechanical (non fully hydraulic) work tools to be used with Open-S Quick Couplers.

section A-A

Right-Outside

SECTION D-D
$\underset{\substack{\text { SECTIOND-D } \\ \text { Left Inide }}}{\text { St }}$

$4 x \quad$ detall

section C-C
SECTION C-C
Right- Inside

PPENS

	L1 Width	L2 c. Width	$\begin{aligned} & \mathrm{L} 3 \\ & \mathrm{c}-\mathrm{C} \end{aligned}$	L4	$\begin{gathered} \text { L5 } \\ \text { Thickn. } \end{gathered}$	$\begin{array}{\|c} \text { L6 } \\ \text { Tol. area } \end{array}$	$\begin{gathered} \text { L7 } \\ \text { Tol. area } \end{gathered}$	L8 Hardening	$\begin{gathered} \text { M1 } \\ \text { Shaft D } \end{gathered}$	M2 Radius	$\begin{array}{\|c\|} \hline \text { M3 } \\ \text { Tol Area } \end{array}$	M4	N1	N2	N3	N4 Offset	N5 Width	$\begin{gathered} \text { N6 } \\ \text { Rec Th. } \end{gathered}$	N7 Radius
OS45M	$\begin{aligned} & 291,5 \\ & +1 /-0,5 \end{aligned}$	291 Min	$\begin{aligned} & 430,25 \\ & +/-0,25 \end{aligned}$	100 +/-2	40 Max	70	85	60 Min	45 f8	45 Max	90	$\begin{array}{\|l\|} \hline 30 \\ +1-2 \end{array}$	$\begin{aligned} & 23,5 \\ & +/-1 \end{aligned}$	$\begin{aligned} & 65 \\ & +/-1 \end{aligned}$	70 Min	$\begin{gathered} 8 \\ +/-1 \end{gathered}$	$\begin{aligned} & 140 \\ & +/-1 \end{aligned}$	8	15 Max
OS50M	$\begin{aligned} & 271,5 \\ & +1 /-0,5 \end{aligned}$	271 Min	$\begin{aligned} & 430,25 \\ & +/-0,25 \end{aligned}$	100 +/-2	40 Max	70	85	70 Min	50 f8	45 Max	90	$\begin{array}{\|l\|} \hline 30 \\ +1-2 \end{array}$	$\begin{aligned} & 26 \\ & +/-1 \end{aligned}$	$\begin{aligned} & 65 \\ & +/-1 \end{aligned}$	70 Min	$\begin{gathered} 8 \\ +/-1 \end{gathered}$	$\begin{aligned} & 140 \\ & +/-1 \end{aligned}$	8	15 Max
OS60M	$\begin{aligned} & 341,5 \\ & +1 /-0,5 \end{aligned}$	341 Min	$\begin{aligned} & 480,25 \\ & +/-0,25 \end{aligned}$	$\begin{aligned} & 137,5 \\ & +1-2 \end{aligned}$	45 Max	85	100	75 Min	60 f8	60 Max	120	$\begin{array}{\|l\|} \hline 30 \\ +1-2 \end{array}$	$\begin{array}{\|l\|} \hline 31 \\ +/-1 \end{array}$	$\begin{aligned} & 70 \\ & +/-1 \end{aligned}$	85 Min	$\begin{gathered} 6 \\ +/-1 \end{gathered}$	$\begin{aligned} & 160 \\ & +/-1 \end{aligned}$	10	20 Max
OS65M	$\begin{aligned} & 441,5 \\ & +1 /-0,5 \end{aligned}$	441 Min	$\begin{aligned} & 530,25 \\ & +/-0,25 \end{aligned}$	$\begin{aligned} & 152,5 \\ & +1-2 \end{aligned}$	55 Max	90	110	90 Min	65 f8	65 Max	130	$\begin{array}{\|l\|} \hline 30 \\ +1-2 \end{array}$	$\begin{aligned} & 33,5 \\ & +/-1 \end{aligned}$	$\begin{aligned} & 83 \\ & +/-1 \end{aligned}$	90 Min	$\begin{gathered} 6 \\ +/-1 \end{gathered}$	$\begin{aligned} & 230 \\ & +/-1 \end{aligned}$	10	20 Max
OS70M	$\begin{aligned} & 451,5 \\ & +1 /-0,5 \end{aligned}$	451 Min	$\begin{aligned} & 600,25 \\ & +/-0,25 \end{aligned}$	205 +/-2	55 Max	115	115	95 Min	70 f8	75 Max	150	$\begin{array}{\|l\|} \hline 50 \\ +1-2 \\ \hline \end{array}$	$\begin{aligned} & 36 \\ & +/-1 \end{aligned}$	$\begin{aligned} & 90 \\ & +/-1 \end{aligned}$	115 Min	$\begin{gathered} 7 \\ +/-1 \end{gathered}$	$\begin{aligned} & 225 \\ & +/-1 \end{aligned}$	12	30 Max
OS70/55M	$\begin{aligned} & 551,5 \\ & +1 /-0,5 \end{aligned}$	551 Min	$\begin{aligned} & 600,25 \\ & +/-0,25 \end{aligned}$	$205+$ /-2	55 Max	115	115	95 Min	70 f8	75 Max	150	$\begin{array}{\|l\|} 50 \\ +1-2 \end{array}$	$\begin{aligned} & 36 \\ & +/-1 \end{aligned}$	$\begin{aligned} & 102 \\ & +/-1 \end{aligned}$	115 Min	$\begin{gathered} 5 \\ +/-1 \end{gathered}$	$\begin{aligned} & 320 \\ & +/-1 \end{aligned}$	12	30 Max
OS80M	$\begin{aligned} & 591,5 \\ & +1 /-0,5 \end{aligned}$	591 Min	$\begin{aligned} & 670,25 \\ & +/-0,25 \end{aligned}$	220 +/-2	65 Max	135	135	120 Min	80 f8	90 Max	180	$\begin{aligned} & 50 \\ & +/-2 \end{aligned}$	$\begin{aligned} & 41 \\ & +/-1 \end{aligned}$	$\begin{aligned} & 110 \\ & +/-1 \end{aligned}$	135 Min	$\begin{gathered} 8 \\ +/-1 \end{gathered}$	$\begin{aligned} & 310 \\ & +/-1 \end{aligned}$	15	30 Max
OS90M	$\begin{aligned} & 751,5 \\ & +1 /-0,5 \end{aligned}$	751 Min	$\begin{aligned} & 750,25 \\ & +/-0,25 \end{aligned}$	225 +/-2	80 Max	155	150	160 Min	90 f8	110 Max	220	$\begin{aligned} & 50 \\ & +/-2 \end{aligned}$	$\begin{aligned} & 46 \\ & +/-1 \end{aligned}$	$\begin{aligned} & 130 \\ & +/-1 \end{aligned}$	155 Min	$\underset{+/-1}{2}$	$\begin{aligned} & 400 \\ & +/-1 \end{aligned}$	15	30 Max

Standardization by the Open-S Alliance. Revision A, May 17, 2021 | For more information please see www.opens.org

